Verification of resistance to three mediated microbial strains and cancerous defense against MCF7 compared to HepG2 through microwave synthesized plant-mediated silver nanoparticle
W I Abdel-Fattah, M M Eid, M F Hanafy, M Hussein, Sh I Abd El-Moez, S M El-Hallouty and E Mohamed
Abstract
The antimicrobial and anticancer efficiencies of green synthesized silver nanoparticles (AgNPs) through biogenic extracts were assessed on three bacterial strains and two cancer cell lines. Bio-synthesized AgNPs were achieved through domestic microwave generator for obtaining extracts from Asian nuts and Egyptian blackberry fruits. Surface plasmon resonance (SPR) ~435 nm demonstrated AgNPs earlier formation by the fruit extract. Capping by triglycerides/almond and phenols/berry extracts were responsible for the reduction proved by FTIR. XRD calculated particle sizes were 18 and 42 nm while TEM sizes are 24.5 and 21.5 nm for AgNPs from almond nut and blackberry fruits extracts (Alm.N.Ext. and BB.F.Ext.), respectively. Ag 3d5/2 was recorded at 368.12 eV for both samples through XPS. The monodispersed AgNPs recorded 0.727 and 0.5 polydispersity indices (PdI) for almond/Ag and berry/Ag, respectively. Zeta potential ~ −31 and −13.2 for the same sequence confirmed the higher stability of the former. Reaction kinetics confirmed the advantage of fruit extract consuming only six minutes compared to nuts, consuming twice. Bactericidal effect of the extracts seldomly presented remarkable inhibition compared to extracts/Ag against the three species. In addition, Alm.N.Ext. showed the highest inhibition against staphylococcus aureus (S. aureus) at 4 mM. The anti-cancerous effect of Ag/berry against HepG2 is stronger than Ag/almond, and similarly for MCF7